Unprecedented C-selective interstrand cross-linking through in situ oxidation of furan-modified oligodeoxynucleotides.
نویسندگان
چکیده
Chemical reagents that form interstrand cross-links have been used for a long time in cancer therapy. They covalently link two strands of DNA, thereby blocking transcription. Cross-link repair enzymes, however, can restore the transcription processes, causing resistance to certain anti-cancer drugs. The mechanism of these cross-link repair processes has not yet been fully revealed. One of the obstacles in this study is the lack of sufficient amounts of well-defined, stable, cross-linked duplexes to study the pathways of cross-link repair enzymes. Our group has developed a cross-link strategy where a furan moiety is incorporated into oligodeoxynucleotides (ODNs). These furan-modified nucleic acids can form interstrand cross-links upon selective furan oxidation with N-bromosuccinimide. We here report on the incorporation of the furan moiety at the 2'-position of a uridine through an amido or ureido linker. The resulting modified ODNs display an unprecedented selectivity for cross-linking toward a cytidine opposite the modified residue, forming one specific cross-linked duplex, which could be isolated in good yield. Furthermore, the structure of the formed cross-linked duplexes could be unambiguously characterized.
منابع مشابه
Fine-tuning furan toxicity: fast and quantitative DNA interchain cross-link formation upon selective oxidation of a furan containing oligonucleotide.
Oligonucleotides containing a furan modified internal nucleoside have been synthesized; selective in situ oxidation of the furan moiety to a reactive enal species in the presence of a complementary DNA strand gives rise to fast and efficient formation of an interstrand cross-link.
متن کاملSynthesis and incorporation of a furan-modified adenosine building block for DNA interstrand crosslinking.
2'-O-(3-(Furan-2-yl)propyl)adenosine was synthesized and evaluated for interstrand crosslink (ICL) formation in DNA duplexes. In situ oxidation of the furan moiety with NIS showed rapid crosslink formation to dA and dC, while dT and dG were inactive.
متن کاملA mildly inducible and selective cross-link methodology for RNA duplexes.
We here report on the furan oxidation methodology for interstrand cross-linking of RNA duplexes, which have a different structure and are more stiff, reactive and labile than their DNA counterparts. Through this mildly inducible approach, natural unmodified RNA can be selectively cross-linked in high yield. The method therefore has direct applications in the increasing number of RNA based techn...
متن کاملSynthesis and Improved Cross-Linking Properties of C5-Modified Furan Bearing PNAs.
Over the past decades, peptide nucleic acid/DNA (PNA:DNA) duplex stability has been improved via backbone modification, often achieved via introducing an amino acid side chain at the α- or γ-position in the PNA sequence. It was previously shown that interstrand cross-linking can further enhance the binding event. In this work, we combined both strategies to fine-tune PNA crosslinking towards si...
متن کاملFuran-modified oligonucleotides for fast, high-yielding and site-selective DNA inter-strand cross-linking with non-modified complements†
Among the various types of DNA damage, inter-strand cross-links (ICL) represent one of the most cytotoxic lesions. Processes such as transcription and replication can be fully blocked by ICLs, as shown by the mechanism of action of some anticancer drugs. However, repair of ICLs can be a possible cause of resistance. To study the mechanisms of cross-link repair stable, site-specifically cross-li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 133 4 شماره
صفحات -
تاریخ انتشار 2011